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Abstract

Although banned in most countries, dichlorodiphenyl-trichloroethane (DDT) continues to be used 

for vector control in some malaria endemic areas. Previous findings from the Center for the Health 

Assessment of Mothers and Children of Salinas (CHAMACOS) cohort study found increased 

prenatal levels of DDT and its breakdown product dichlorodiphenyl-dichloroethylene (DDE) to be 

associated with altered neurodevelopment in children at 1 and 2 years of age. In this study, we 

combined the measured maternal DDT/E concentrations during pregnancy obtained for the 

prospective birth cohort with predicted prenatal DDT and DDE levels estimated for a retrospective 

birth cohort. Using generalized estimating equation (GEE) and linear regression models, we 

evaluated the relationship of prenatal maternal DDT and DDE serum concentrations with 

children’s cognition at ages 7 and 10.5 years as assessed using the Full Scale Intelligence Quotient 

(IQ) and 4 subtest scores (Working Memory, Perceptual Reasoning, Verbal Comprehension, and 

Processing Speed) of the Wechsler Intelligence Scale for Children (WISC). In GEE analyses 

incorporating both age 7 and 10.5 scores (n = 619), we found prenatal DDT and DDE levels were 

not associated with Full Scale IQ or any of the WISC subscales (p-value >0.05). In linear 

regression analyses assessing each time point separately, prenatal DDT levels were inversely 

associated with Processing Speed at age 7 years (n = 316), but prenatal DDT and DDE levels were 

not associated with Full Scale IQ or any of the WISC subscales at age 10.5 years (n = 595). We 

found evidence for effect modification by sex. In girls, but not boys, prenatal DDE levels were 
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inversely associated with Full Scale IQ and Processing Speed at age 7 years. We conclude that 

prenatal DDT levels may be associated with delayed Processing Speed in children at age 7 years 

and the relationship between prenatal DDE levels and children’s cognitive development may be 

modified by sex, with girls being more adversely affected.

1. Introduction

Dichlorodiphenyl-trichloroethane (DDT) is an organochlorine insecticide which was used 

worldwide in agriculture and vector control efforts until concerns about its environmental 

persistence and toxic effects on wildlife and humans led to usage restrictions and 

prohibitions (ATSDR, 2002; Rosenberg, 2004). In the United States, DDT was banned in 

1972 except for use in emergency disease control (ATSDR, 2002). Agricultural DDT use 

ended in the mid-1970s in central Mexico, but in coastal regions DDT use continued until 

the 1990s for domestic food production (NACEC, 2001) and until 2000 for malaria control 

(Chanon et al., 2003). DDT was banned under the 2001 Stockholm Convention on Persistent 

Organic Pollutants for all uses except disease control (Rosenberg, 2004). In 2006, the World 

Health Organization endorsed the increased use of DDT for vector control in malaria 

endemic areas (World Health Organization, 2006). DDT is currently used for malaria control 

in at least 10 countries including Botswana, Democratic Republic of Congo, Gambia, India, 

Mozambique, Namibia, South Africa, Swaziland, Zambia, and Zimbabwe (World Health 

Organization, 2014).

Animal studies have shown that DDT and its breakdown product, dichlorodiphenyl-

dichloroethylene (DDE), are neurodevelopmental toxicants (Craig and Ogilvie, 1974; 

Eriksson et al., 1990; Eriksson and Nordberg, 1986; Johansson et al., 1996; U.S. DHHS, 

2002). DDT levels timed to sensitive periods of prenatal (Craig and Ogilvie, 1974) and 

neonatal (Eriksson et al., 1990; Eriksson and Nordberg, 1986; Johansson et al., 1996) 

nervous system development have been shown in mice to cause behavioral and 

neurochemical changes into adulthood.

Most studies conducted in humans have focused primarily on the neurodevelopmental 

toxicity of DDE rather than DDT exposure and results have been inconsistent. For example, 

no adverse associations were found between transplacental (scaled average of cord blood, 

placenta, and maternal blood) (Rogan et al., 1987) or breast milk DDE levels with 

performance on the Bayley Scales of Infant Development (BSID) at 6 to 24 months of age 

(Gladen et al., 1988; Rogan and Gladen, 1991) or on the McCarthy Scales of Children’s 

Abilities (MCSA) at ages 3, 4, and 5 years (Gladen and Rogan, 1991) in a large North 

Carolina birth cohort study recruited in the 1980s (n = 802), nor in a study of cord blood 

DDE levels and performance on the Neonatal Behavioral Assessment Scale (Stewart et al., 

2000) or the Fagan Test of Infant Intelligence at 6 and 12 months (Darvill et al., 2000) in 

141 newborns born in Oswego, New York between 1991 and 1994. However, other studies 

have found significant adverse associations, including in a small Spanish study of 13-month 

olds (n = 92) with relatively low cord serum DDE levels that reported inverse relationships 

with Mental Development Index (MDI), Psychomotor Development Index (PDI), and social 

development index on the BSID and Griffith Scales of Infant Development (Ribas-Fito et al., 
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2003), and in a Mexican study (n = 244) from the State of Morelos where DDT was used 

until 1998 that reported a relationship between prenatal DDE levels and the BSID PDI in 

infants up to 12-months old (Torres-Sanchez et al., 2007) and with general cognitive index, 

quantitative, verbal, and memory domains of the MSCA at 3.5 to 5 years old (Torres-

Sánchez et al., 2013), although not with PDI or MDI at 30 months (Torres-Sánchez et al., 

2009).

Only a few studies have measured serum concentrations of DDT in addition to DDE 

(DDT/E). In a large United States (US) pregnancy cohort study from 1959–1965 (n = 1100) 

during the time of peak DDT usage no adverse association was found between prenatal 

maternal DDT nor DDE levels and children’s BSID MDI or PDI scores at 8 months or Full-

Scale Intelligence Quotient (IQ) on the Wechsler Intelligence Scale for Children (WISC) at 

7 years of age (Jusko et al., 2012). In a cohort from Ribera d’Ebre and Menorca, Spain (n = 

475), DDT levels measured in cord blood samples, but not DDE levels, were associated with 

poorer performance in general cognitive, quantitative, verbal, memory, and executive 

function domains of the MCSA (Ribas-Fito et al., 2006). Similarly, in our previous work 

from the Center for the Health Assessment of Mothers and Children of Salinas 

(CHAMACOS) cohort study (n = 360), comprised primarily of California women who had 

recently immigrated from Mexico, we reported significant inverse associations between 

prenatal DDT levels and PDI at 6 and 12 months and MDI at 12 and 24 months (Eskenazi et 

al., 2006) but also no association of prenatal DDE concentrations beyond 6 months (and then 

only on the PDI)(Eskenazi et al., 2006).

In the present study, we examined the relationship of prenatal maternal DDT and DDE 

serum concentrations and the cognitive development of CHAMACOS children at 7- and 

10.5-years of age. Given that DDT and DDE are well-known endocrine disrupting chemicals 

with estrogenic and antiandrogenic properties, respectively (ATSDR, 2002), we examined 

whether associations with neurodevelopment differ by sex.

2. Methods

2.1. Study Population

Between 1999–2000, 601 pregnant women living in the agricultural Salinas Valley, 

California were enrolled in the initial CHAMACOS cohort (CHAM1) to investigate the 

health effects of pesticides and other environmental pollutants on pregnant women and their 

children. Women were recruited from Salinas Valley clinics providing prenatal care to low-

income residents. Per eligibility criteria, CHAM1 recruitment was limited to women who 

were ≥18 years of age, <20 weeks of gestation, English- or Spanish-speaking, eligible for 

Medi-Cal (subsidized health care), and planning to deliver at Natividad Medical Center 

(NMC), the local county hospital. Of the 601 initially enrolled women, 526 both remained in 

the study at delivery and bore live-born singletons. Details of the CHAM1 cohort have been 

described previously (Eskenazi et al., 2003; Eskenazi et al., 2004).

In 2009–2011, when the CHAM1 children were 9 years old, an additional 309 mothers and 

their 9-year-old children (CHAM2) were enrolled into the CHAMACOS cohort. Eligibility 

criteria for CHAM2 participants mirrored those for CHAM1; namely, participant mothers 
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needed to speak English or Spanish, and to have resided in Salinas Valley during their 

pregnancy with their singleton index child, qualified for Medi-Cal during pregnancy, 

received prenatal care, and been ≥18 years of age at time of delivery. CHAM2 participants 

were recruited via local schools, churches, libraries, food banks, newspaper/radio 

advertisements, and friends/relatives of CHAM1 participants.

2.2. Data Collection

Trained bilingual psychometricians assessed child neurodevelopment with the WISC, 4th 

edition at age 7 for CHAM1 children (mean age = 7.11 years, standard deviation (SD) = 

0.23 years) and at age 10.5 for CHAM1 and CHAM2 children (mean age = 10.61 years, SD 

= 0.18 years). Children were assessed in their dominant language (English or Spanish), as 

ascertained via direct assessment. WISC tests were conducted in the CHAMACOS field 

office for the large majority of children, or in a quiet area of the child’s home for the 

minority of families who had moved outside the Salinas Valley. Children completed the 

following WISC subtests: Block Design, Digit Span, Coding, Letter-Number Sequencing, 

Matrix Reasoning, Symbol Search, Similarities, and Vocabulary. Subtest results were used to 

calculate Full Scale IQ scores as well as scaled scores for Verbal Comprehension, Perceptual 

Reasoning, Processing Speed, and Working Memory (mean = 100, SD = 15) (Wechsler, 

2003). A single psychometrician administered all 7-year neurodevelopmental assessments 

and three psychometricians administered the 10.5-year assessments.

Maternal cognitive functioning was assessed when children were aged 6 months (CHAM1) 

and/or 9 years (CHAM1 and CHAM2) using the Peabody Picture Vocabulary Test (PPVT) – 

Revised (standardized in Spanish and English, mean = 100, SD = 15)(Dunn and Dunn, 

1981). The home learning environment and quality of parent-child relationships was 

assessed with the Home Observation for Measurement of the Environment (HOME)

(Caldwell and Bradley, 1984) at the 7- and 10.5-year visits. The test included maternal 

responses to parenting questions and observed parent-child interactions. Maternal depression 

was assessed using the Center for Epidemiological Studies Depression scale (CES-D)

(Radloff, 1977) at the 7- and 9-year visits.

2.3. Serum Collection and DDT/E Analysis

For the majority of CHAM1 mothers, blood samples were collected via venipuncture in the 

2nd trimester of pregnancy and, if unavailable, at delivery (Bradman et al., 2007). For the 

majority of CHAM2 (n=293) and a subset of CHAM1 participants (n=226), blood samples 

were also collected via venipuncture from mother and/or children approximately 9 years 

after delivery. Samples were frozen and shipped to the Center for Disease Control and 

Prevention (CDC) to be analyzed by gas chromatography-high resolution mass spectrometry 

for p,p′-DDT (hereafter, DDT) and p,p′-DDE (hereafter, DDE) (Sjödin et al., 2004). Serum 

levels of triglycerides and total cholesterol were measured using standard enzymatic 

methods (Roche Chemicals, Indianapolis, IN). DDT and DDE levels were expressed on a 

serum-lipid basis (nanograms per gram lipid) based on the total lipid levels using the 

summation method described by Phillips et al. (1989). DDT and DDE concentrations 

measured during pregnancy were above the limit of detection (LOD) in 99.6 and 100% of 

the samples, respectively. DDT serum values below the LOD (mean LOD = 1.9 ng/g-lipid) 

Gaspar et al. Page 4

Environ Int. Author manuscript; available in PMC 2016 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were assigned the LOD/√2.(Hornung and Reed, 1990) For two mothers with measured DDE 

but not DDT levels during pregnancy, values for DDT were imputed using a linear 

regression model with DDE as the independent variable.

2.4. Prediction of CHAM2 Prenatal Maternal DDT/E Serum Concentrations

ForCHAM2 mothers (n = 293) and a subset of CHAM1 mothers (n = 60) without measured 

maternal DDT/E concentrations during pregnancy, log10 prenatal DDT/E levels were 

predicted using log10 DDT/E concentrations in the mother and/or child measured when the 

child was 9 years old and using additional questionnaire data (e.g., years in the US, country 

of birth, maternal parity, and breastfeeding history). Prediction models were built with a 

subsample of CHAM1 mother/child pairs (n= 166) who had both measured maternal DDT/E 

concentrations during pregnancy and measured maternal and/or child levels when the child 

was 9-years old along with questionnaire data. To build the prediction models, we used the 

Super Learner algorithm, which is an ensemble machine learning technique that utilizes a 

weighted combination of algorithms to return a prediction function that minimized 10-fold 

cross-validated mean squared error (MSE) (van der Laan et al., 2007). In the subset of 

participants who had measured maternal DDT/E levels during pregnancy and repeated 

DDT/E measures in either the mother and child when the child was 9 years old, the Super 

Learner algorithm showed strong predictive ability with root MSEs ranging from 0.09 to 

0.30 log ng/g and R2s ranging from 0.86 to 0.97 between measured and predicted log10-

transformed prenatal DDT and DDE concentrations. Methods to back-extrapolate used in 

this analysis are described in Verner et al. (2015); however, to speed up computational time, 

we did not use the Deletion/Substitution/Addition (DSA) algorithm as a candidate Super 

Learner algorithm in this analysis. As the missing maternal DDT/E concentrations during 

delivery can be conceptualized as a missing data problem, we performed multiple 

imputations of the predicted DDT/E levels to capture the contribution of the variability in the 

DDT/E prediction on our assessment of the association between prenatal DDT/E and 

neurodevelopment. To accomplish this, we performed 100 bootstrap samples (sampling with 

replacement) of the CHAM1 data (n = 166) and built 100 Super Learner models in each of 

these datasets (Graham et al., 2007). Each of these 100 prediction models was used to 

predict the missing prenatal DDT/E levels resulting in 100 datasets containing both 

measured and predicted levels. We then evaluated the relationship between prenatal maternal 

DDT/E levels and children’s neurodevelopment in each of these datasets. Lastly, we 

combined the multiple imputation summary statistics (beta coefficients and standard errors) 

to calculate a single metric of association between prenatal DDT/E levels and child 

neurodevelopment based on methods described in Rubin (1987).

2.5. Data Analysis

DDT/E concentrations were log10-transformed to stabilize variance. Using chi-squared 

(categorical variables) and t-tests (continuous variables), we tested for differences in 

demographic characteristics and log10 DDT/E levels between: 1) the CHAM1 children who 

were followed and those lost to follow-up; and 2) the CHAM1 (followed) and CHAM2 

study populations. Directed acyclic graphs were used to identify confounders and we 

adjusted all regression models for the following covariates: parity, maternal education at 

delivery, time lived in the U.S. at the time of the index child’s birth, country of birth, and age 
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at delivery. Maternal intelligence and depression (dichotomized as CES-D score ≥ or < 16) 

(Lewinsohn et al., 1997), language of neurodevelopmental assessment, poverty status at the 

time of assessment (above or below poverty thresholds set by U.S. census bureau), child’s 

age and sex, and HOME-derived z-score at the time of assessment were also adjusted for 

because they are important determinants of child WISC scores (Ellis and Hennelly, 1980; 

Luster and Dubow, 1992; Neisser et al., 1996; Petterson and Albers, 2001; Yeates et al., 

1983). The maternal PPVT score at the 6-months visit was used for the 7-year analysis, and 

the PPVT score at the 9-year visit was used for 10.5-year analysis. However, when a 

mother’s PPVT score from the preferred age point was missing, it was substituted with the 

score from the other age point (n≤8 such substitutions per analysis). Missing confounder 

data (<5%) was imputed based on each variable’s observed probability distribution.

We used generalized estimating equations (GEE) models with robust standard errors to 

assess associations between prenatal DDT/E levels and 7- and 10.5-year WISC scores 

simultaneously. We also used multiple linear regression models to test age-specific 

associations between prenatal DDT/E levels and WISC scores at 7 years and 10.5 years (i.e., 
with separate models for each age). Associations of DDT and DDE with WISC scores were 

assessed in separate models due to high collinearity of these two compounds (variable 

inflation factor > 5). To check the assumption that linear models were appropriate, we 

compared generalized additive models (GAM) with cubic splines to ordinary least square 

models using chi-square tests. GAM models did not fit the data better than linear models; 

therefore, only results from linear regression models are presented for age-specific analyses.

Insensitivity analyses, we explored the potential confounding effect of prenatal maternal 

levels to additional environmental neurotoxicants including organophosphate pesticides 

(measured as dialkyl phosphate (DAP) metabolites) (Bouchard et al., 2011; Engel et al., 

2011), polybrominated diphenyl ethers (PBDEs) (Eskenazi et al., 2013; Herbstman et al., 

2010), lead (Lanphear et al., 2005; Schnaas et al., 2006), and polychlorinated biphenyls 

(PCB) (Jacobson and Jacobson, 1996; Patandin et al., 1999). Each toxicant was included in 

separate models and also tested for interaction with DDT and DDE, but none of these 

toxicants were retained in the final model as the magnitude of the coefficients for DDT/E 

concentrations were not changed by >10% and the interaction terms were not significant (p-

interaction > 0.10). We ran additional models including cross-product terms to test for effect 

modification attributable to:1) measured versus predicted prenatal DDT/E levels; 2) 

membership in the CHAM1 versus CHAM2 cohort; and 3) child sex. Main effects were 

considered statistically significant if the p-values were below < 0.05 based on a two-tailed 

test. All analyses were performed using the statistical program R, version 3.1.3 (R Core 

Team, 2013).

3. Results

Of the 316 children who completed the neurodevelopmental assessment at 7 years (all 

CHAM1), prenatal maternal DDT/E concentrations were measured in 256 and predicted in 

60. Of the 595 completing the 10.5-year assessment (CHAM1 n = 302, CHAM2 n = 293), 

prenatal maternal DDT/E levels were measured in 244 and predicted in 351. Mothers (n = 

619) of these children were predominantly Mexican-born (86%) and multiparous (67%); 
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most were < 30 years old (71%) and had not completed high school (76%) at the time of 

delivery.

Compared to CHAM1 children who were lost to follow-up, CHAM1 children included in 

this analysis were more likely to be female, to have been born to older mothers, and to have 

breastfed longer (data not shown). However, prenatal DDT/E levels; maternal birthplace, 

time in U.S., parity, PPVT scores, and depression; household per person income; and 

HOME scores did not significantly differ between those followed and those not followed 

(results not shown). No differences in outcome or covariate characteristics were observed 

between CHAM1 and CHAM2 (Table 1), except that a higher percentage of CHAM2 

mothers had “at risk” depression scores compared to CHAM1 mothers (p-value = 0.07).

Distributions did not significantly differ (p-value > 0.05) between prenatal DDT/E 

concentrations that were measured (DDT/E geometric mean (GM) = 21.4 and 606.4 ng/g-

lipid, respectively) versus predicted (DDT/E GM = 20.2 and 607.3 ng/g-lipid, respectively) 

(Table S1). Similarly, distributions of prenatal DDT/E concentrations did not differ 

significantly between CHAM1 (DDT/E GM = 21.3 and 604.5 ng/g-lipid, respectively) and 

CHAM2 (DDT/E GM = 20.1 and 609.6 ng/g-lipid, respectively). We found no evidence for 

effect modification (p-interaction > 0.1) based on whether prenatal DDT/E was measured or 

predicted or on membership in the CHAM1 versus CHAM2 cohort. Therefore, estimations 

using measured and predicted values from both cohorts are reported in the main text, but 

GEE and linear regression model results using only measured prenatal DDT/E levels are 

presented in the Supplemental Material.

In GEE analyses including both CHAM1 and CHAM2 children and WISC scores for both 

time points, prenatal DDT and DDE levels were not significantly associated with Full Scale 

IQ or WISC subscales (Table 2). In age-specific linear regression models using only the 7-

year visit CHAM1 data, we found consistent inverse associations of prenatal DDT levels 

with Full Scale IQ and WISC subscales; however, only the associations for Processing 

Speed (β = −2.4; 95% CI: −4.5,−0.2; p = 0.03) and Verbal Comprehension (β = −1.9; 95% 

CI: −4.0,0.2; p = 0.08) reached or approached statistical significance. We found null 

associations between prenatal DDE levels and Full Scale IQ or any WISC subscales; 

however, in all cases except for Working Memory, the direction of the association was 

negative. In linear regression models using the 10.5-year data from both CHAM1 and 

CHAM2 children, we observed no associations of prenatal DDT or DDE levels with Full 

Scale IQ or WISC subscales.

In GEE analyses, we observed no effect modification by sex on associations between 

prenatal DDT or DDE levels and any outcomes (Figure 1 and Table S3). In age-specific 

regression analyses, we found that the association between prenatal DDT levels and 

Perceptual Reasoning at age 7 differed significantly between boys and girls (p-interaction = 

0.08, Table S4). More specifically, prenatal DDT levels showed a negative association with 

Perceptual Reasoning scores in girls (β = −1.4; 95% CI: −4.2, 1.4, p = 0.32), but a positive 

association in boys (β = 1.7; 95% CI: −1.1, 4.5, p = 0.24); however, neither association was 

significant. We found that the association between prenatal DDE levels and Working 

Memory, Perceptual Reasoning, Processing Speed and Full Scale IQ at age 7 differed 
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significantly between boys and girls (p-interaction < 0.10, Table S4). Specifically, when we 

stratified by sex, we observed significant inverse associations between prenatal DDE levels 

and Verbal Comprehension (β = −3.1; 95% CI: −6.0,−0.1, p = 0.04), Processing Speed (β = 

−4.2; 95% CI: −7.1,−1.3, p < 0.01) and Full Scale IQ (β = −4.4; 95% CI: −7.6,−1.3, p = 

0.01) in girls but not in boys. We also observed non-significant inverse associations between 

prenatal DDE levels and Working Memory and Perceptual Reasoning in girls but positive 

associations in boys. At age 10.5 years, associations between prenatal DDE levels and 

Working Memory scores were significantly different between boys and girls (p-interaction = 

0.03) (Table S5). In contrast to the 7-year results, we found borderline-significant inverse 

associations of prenatal DDT/E levels with Working Memory at 10.5 years for boys only 

(DDT: β = −1.8; 95% CI: −3.8, 0.1, p = 0.06; DDE: β = −1.9; 95% CI: −4.1, 0.3, p = 0.10).

4. Discussion

In this study, we combined data from two similar cohorts, one prospective and one 

retrospective, to investigate the relationship between prenatal maternal DDT and DDE levels 

and cognitive development in children at ages 7 and 10.5 years as assessed by the WISC IV. 

In analyses including all children and cognitive outcomes from both time points (GEE 

analyses), we observed null associations between prenatal DDT and DDE levels and Full 

Scale IQ and any of the WISC subscales. In age-specific analyses, prenatal DDT levels were 

inversely associated with Processing Speed at age 7, but neither prenatal DDT nor DDE 

levels were associated with Full Scale IQ or any of the WISC subscales at age 10.5. We 

found evidence for effect modification by sex at age 7 with girls exhibiting stronger inverse 

associations than boys between prenatal DDE levels and all intelligence metrics except 

Verbal Comprehension.

Only one previous study has measured prenatal levels of both DDT and DDE and followed 

the neurodevelopmental functioning of children until grade school. Similar to our results, 

Jusko et al. (2012) found prenatal DDT and DDE levels to not be associated with Full Scale 

IQ scores at 7 years in a highly exposed historical cohort (median serum DDT = 1,100 and 

DDE = 3,000 ng/g-lipid). However, the associations between DDT/E and WISC subscales 

were not evaluated.

In the present study, we observed an inverse association between prenatal DDE levels and 

Processing Speed at age 7 years. Impaired Processing Speed may be a risk factor for 

attention and learning problems (Calhoun and Mayes, 2005; Shanahan et al., 2006) and the 

associations that we observed between prenatal DDE levels and reduced Processing Speed 

are in accordance with previous research showing prenatal DDE levels to be associated with 

attention problems (Sage et al., 2010; Siren et al., 2013). For example, Sage et al. (2010) 

found higher risk for attention-deficit/hyperactivity disorder-like behaviors in 7–11 year old 

children (n=607) with higher prenatal maternal levels of DDE.

We found evidence for effect modification by sex as prenatal DDE levels were inversely 

associated with Processing Speed and Full Scale IQ at age 7 in girls, but not boys. Of the 

four previous studies that examined effect modification by sex on prenatal levels to DDT or 

DDE and cognitive development in children (Eskenazi et al., 2006; Ribas-Fito et al., 2006; 
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Torres-Sánchez et al., 2009; Torres-Sánchez et al., 2013), only two reported a significant 

interaction (Eskenazi et al., 2006; Ribas-Fito et al., 2006). Notably, the later two studies 

reported effect modification with DDT isomers, not DDE. Although we did not previously 

find sex modified the relationship between p,p′-DDT and cognitive development in 

CHAMACOS children up to 24-months old, we found a significant inverse association 

between prenatal o,p′-DDT levels and PDI scores at 12-months in boys but not girls in the 

CHAMACOS cohort (Eskenazi et al., 2006). In contrast to our previous findings but 

supporting our current study’s results of girls more adversely affected by prenatal exposure, 

Ribas-Fito et al. (2006) observed stronger inverse associations between p,p′-DDT and 

General Cognition, Verbal Memory, and Working Memory on the MSCA in girls than boys 

at 4 years of age. As sex modified the relationship between prenatal DDE, not DDT, levels 

and WISC scores, our findings support the hypothesis of sexually dimorphic effects of 

androgen receptor antagonists on the developing brain (Parent et al., 2011; Zhang et al., 

2008). Nevertheless, given the inconsistent findings of effect modification by sex between 

our study and previous studies, further research is needed.

Although most associations were not significant, we found consistent inverse associations of 

prenatal DDT/E levels with most IQ metrics assessed at age 7, but we did not observe 

consistent associations in the 10.5-year data. This “washing out” of the association may be 

due to the effect of puberty on IQ, as pubertal development has been associated with 

differences in IQ (Galatzer et al., 1984; Judith Semon et al., 1991; Karlsson, 1990). Because 

timing of puberty may be on the causal pathway of DDT effects on IQ (Den Hond and 

Schoeters, 2006; Roy et al., 2009), we did not adjust for puberty in our analyses. 

Alternatively, the lack of associations at age 10.5 may indicate that the effects of prenatal 

DDT/E levels on cognitive development are not long lasting and could have diminished by 

the time the children reach age 10.5. When we examined only those with measured rather 

than predicted prenatal DDT/E levels, the finding of no associations at age 10.5 suggests that 

the lack of association is not due to selection bias or measurement error induced by 

including the CHAM2 participants or those with predicted levels.

We used a novel approach to predict the prenatal DDT and DDE levels of half the cohort. 

This is the first study to predict prenatal DDT levels as an exposure or assess IQ as an 

outcome of the prediction. Karmaus et al. (2004) conducted the only previous study to back-

extrapolate prenatal DDE levels (Karmaus et al., 2004). In this study, repeated PCB blood 

measurements in non-pregnant women sampled ~10 years apart were used to develop linear 

regression models to predict past and future DDE serum levels (Karmaus et al., 2004). Using 

these prediction models, researchers found prenatal DDE exposure to be associated with 

decreased initiation/duration of breastfeeding, decreased age of menarche, and increased 

weight gain and body mass index in the offspring 20–50 years after birth (Karmaus et al., 

2005; Karmaus et al., 2009; Vasiliu et al., 2004). We believe that our back-extrapolation 

method has potentially less prediction error than Karmaus et al.’s methods because our 

models were built based on: 1) repeated DDT/E levels; 2) blood collected from pregnant 

women; and 3) cross-validation techniques to prevent overfitting of the model.

Strengths of the present study include its longitudinal design with the WISC administered at 

two time points. Important confounders were also assessed at multiple time points and 
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adjusted for in the models. The innovative use of back-extrapolation of prenatal DDT/E 

levels allowed for increased sample size to investigate health effects from early life 

exposures. CHAM1 and CHAM2 had similar demographic and exposure characteristics, 

giving strength to the assumption that both cohorts came from the same target population 

and can reasonably be combined. In addition, we were able to investigate for potential 

confounding by additional suspected neurotoxicants (DAPs, PBDEs, lead, and PCBs). 

Limitations include not having measured prenatal DDT/E levels on all study participants. In 

addition, for the 10.5-year analysis, more predicted (n = 351) than measured (n = 244) 

prenatal DDT/E levels were used in the analyses. However, the Super Learner algorithm 

showed strong predictive ability (RMSEs 0.09–0.30 log ng/g; R2s 0.86–0.97) and we 

accounted for the uncertainty of the prediction of prenatal levels with multiple imputations 

(Graham et al., 2007). Despite this, error in the prediction may have influenced the study 

results. Finally, we investigated the relationship of DDT and DDE concentrations with IQ 

metrics in separate models due to collinearity, which makes evaluating the true effect of each 

compound difficult to elucidate.

5. Conclusion

We examined prenatal maternal DDT and DDE blood concentrations in relation to children’s 

neurodevelopment at 7 and 10.5 years. We found evidence that prenatal exposure to DDT 

may be associated with delayed Processing Speed in children at age 7 years. We also found 

evidence that the relationship between prenatal DDE exposure and cognitive development 

may be modified by sex, with girls being more adversely affected.
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Highlights

• We combined a prospective and retrospective birth-cohort

• Prenatal DDT and DDE levels were both measured and predicted

• We assessed children’s intelligence at two time points

• We found an association between prenatal DDT levels and Processing 

Speed at age 7 years
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Figure 1. 
Change in cognitive scores for each 10-fold increase in prenatal DDT/E serum 

concentrations in children tested at 7 and/or 10.5-years, stratified by sex. Models adjusted 

for maternal education, age, parity, PPVT scores, CES-D scores, birth country, and years in 

the U.S prior to delivery; HOME z-score; language of WISC testing; child age at WISC 

testing; and household poverty. Vertical lines with middle dots indicate 95% confidence 

intervals and beta coefficients, respectively, for the GEE or linear models. Asterisks (*) 

indicate the p-value for the interaction term is <0.10. Outcome key: WM=Working Memory, 

PR = Perceptual Reasoning, VC = Verbal Comprehension, PS = Processing Speed, FS = Full 

Scale IQ.
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Table 1

Comparison between CHAM1 (n=302) and CHAM2 (n=292) demographic statisticsa

Cohort Characteristics CHAM1
n (%)

CHAM2
n (%)

p-valueb

Child intelligence (full-scale WISC score)c 0.14

 ≤ 74 25 (8.3) 24 (8.2)

 75–99 211 (69.9) 216 (74.0)

 ≥ 100 66 (21.9) 52 (17.8)

Maternal PPVT score 0.17

 ≤ 74 61 (20.2) 75 (25.6)

 75–99 101 (33.4) 92 (31.4)

 ≥ 100 140 (46.4) 126 (43.0)

Maternal education 0.22

 ≤ 6th grade 129 (42.7) 121 (41.3)

 7–12th grade 109 (36.1) 93 (31.7)

 ≥ high school graduate 64 (21.2) 79 (27.0)

Maternal depression (CES-D ≥ 16)d,e 0.07

 No 229 (75.8) 202 (68.9)

 Yes 73 (24.2) 91 (31.1)

Maternal age at delivery (years) 0.95

 18–24 118 (39.1) 119 (40.9)

 25–29 105 (34.8) 82 (28.2)

 30–34 50 (16.6) 58 (19.9)

 35–45 29 (9.6) 32 (11.0)

Maternal country of birth 0.81

 Mexico 264 (87.4) 259 (88.4)

 Other 38 (12.6) 34 (11.6)

Maternal years in US prior to birth 0.58

 ≤ 1 63 (20.9) 56 (19.1)

 2–5 83 (27.5) 82 (28.0)

 6–10 77 (25.5) 68 (23.2)

 ≥ 11 48 (15.9) 61 (20.8)

 Entire life 31 (10.3) 26 (8.9)

Family income at 10.5 years 0.42

 < poverty level 86 (28.5) 74 (25.3)

Environ Int. Author manuscript; available in PMC 2016 December 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gaspar et al. Page 18

Cohort Characteristics CHAM1
n (%)

CHAM2
n (%)

p-valueb

 > poverty level 216 (71.5) 219 (74.7)

Parity prior to index child 0.13

 0 91 (30.1) 106 (36.2)

 ≥1 211 (69.9) 187 (63.8)

Breastfeeding duration of index child 0.68

 ≤ 2 months 73 (24.2) 71 (24.2)

 2–12 months 128 (42.4) 115 (39.2)

 ≥ 12 months 101 (33.4) 107 (36.5)

Sex of index child 0.20

 Female 140 (46.4) 152 (51.9)

 Male 162 (53.6) 141 (48.1)

a
Participants who completed a neurodevelopmental assessment at the 10.5-year visit

b
p-value from t-test (variables = child intelligence, maternal PPVT scores, maternal age, and HOME z-score) or chi-square test between CHAM1 

and CHAM2 study populations

c
Assessed at 10.5-year visit

d
Assessed at 9-year visit

e
Yes = CES-D score≥16
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